The Potassium Niobyl Cyclotetrasilicate $\mathrm{K}_{\mathbf{2}}\left(\mathrm{NbO}_{\mathbf{2}} \mathrm{Si}_{\mathbf{4}} \mathrm{O}_{\mathbf{1 2}}\right.$

M. P. CROSNIER, D. GUYOMARD, A. VERBAERE, Y. PIFFARD,* and M. TOURNOUX
Institut des Matériaux de Nantes, Laboratoire de Chimie des Solides, U.M.R. 110, Université de Nantes, 2 rue de la Houssinière, 44072 Nantes Cédex 03, France

Received July 1, 1991; in revised form November 11, 1991

Abstract

The single-phase compound $\mathrm{K}_{2}\left(\mathrm{NbO}_{2} \mathrm{Si}_{4} \mathrm{O}_{12}\right.$ was prepared by solid-state reaction. It crystallizes in the tetragonal system, space group $P 4 b m$ with $a=8.7404(8) \AA$ and $c=8.136(1) \AA, Z=2$. The structure was determined from 484 reflections collected with a Nonius CAD4 diffractometer with MoK α radiation. The final R index and weighted R_{k} index are 0.021 and 0.022 , respectively. This framework structure is built up from chains of corner-shared NbO_{6} octahedra running parallel to the four-fold axes and linked together by four-membered $\mathrm{Si}_{4} \mathrm{O}_{12}$ single rings. This structure is very similar to that of $\mathrm{K}_{4}(\mathrm{ScOH})_{2}$ $\mathrm{Si}_{4} \mathrm{O}_{12}$. © 1992 Academic Press, Inc.

Introduction

Among three-dimensional skeleton structure types offering interesting possibilities for fast alkali-ion mobility, Nasicon (l), whose framework is built up from MO_{6} octahedra and XO_{4} tetrahedra, has been extensively studied. In an attempt to find similar materials with both octahedra and tetrahedra, we have extended our investigations to other systems: $A_{2} \mathrm{O}-\mathrm{M}_{2} \mathrm{O}_{5}-\mathrm{SiO}_{2}(A=\mathrm{al}-$ kali metal and $M=\mathrm{Sb}, \mathrm{Nb}, \mathrm{Ta}$). This paper reports the preparation and crystal structure determination of a new potassium niobyl silicate: $\mathrm{K}_{2}(\mathrm{NbO})_{2} \mathrm{Si}_{4} \mathrm{O}_{12}$.

Experimental

Single crystals of $\mathrm{K}_{2}(\mathrm{NbO}){ }_{2} \mathrm{Si}_{4} \mathrm{O}_{12}$ were grown from mixtures of $\mathrm{KNO}_{3}, \mathrm{Nb}_{2} \mathrm{O}_{5}$, and

[^0]SiO_{2} (all GR grade, Merck). The chemicals were weighed out in a $2: 1: 6$ mole ratio and the mixture was heated in air, in a platinum crucible, first at 773 K for 6 hr to decompose the KNO_{3} and then at 1423 K to complete the reaction. The crystals obtained are colorless rectangular platelets with large (001) faces. Their chemical analysis, conducted with an electron microprobe, leads to an atomic K to Nb and Si ratio of $1: 1: 2$. Single crystal X-ray study indicates that the compound is of tetragonal symmetry. The cell parameters (Table I) were refined by a leastsquares procedure from powder diffraction data collected with an INEL curved multidetector, using a 0.2 mm capillary and $\mathrm{CuK} \alpha_{1}$ radiation ($\lambda=1.54059 \AA$; silicon as standard). The powder pattern (Table II) includes observed and calculated interplanar distances of the reflection planes along with the intensities calculated from the LAZY-PULVERIX program (2). Intensity data were collected with a Nonius CAD4

TABLE I
Crystallographic and Experimental Data

Formula weight	600.4		
Space group	P4bm		
$a(\AA)$	8.7404(8)		
$c(\AA)$	$8.136(1)$		
$V\left(\AA^{3}\right)$	621.5(2)		
Z	2		
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	3.225		
$\mu(\mathrm{MoK} \alpha)\left(\mathrm{cm}^{-1}\right)$	29.4		
Crystal size (mm)	$0.20 \times 0.15 \times 0.02$		
Radiation (\AA)	$\mathrm{MoK} \alpha, \lambda=0.71069$		
Scan mode	ω		
Scan angle (${ }^{\circ}$)	$\Delta \omega=1.0+0.35 \tan \theta$		
Recording angular range (θ°)	1.5-35.0		
Number of independent data observed with $\sigma(I) / I<0.33$ (used in refinements)	484		
Number of variables (isotropic temperature factors)	33		
$R=\Sigma(\\|F \mathrm{o}\|-\| F \mathrm{c}\\|) / \Sigma\|F \mathrm{~F}\|$	0.025		
$\begin{aligned} & R_{w}=\left[\sum w(\|F \mathrm{o}\|\right. \\ & \left.\left.F \mathrm{o}^{2}\right]^{1 / 2},\|F \mathrm{c}\|\right)^{2} / \Sigma w \\ & \text { with }^{2} w=1 /\left(1+\left[\left(F_{\text {obs }}-\right.\right.\right. \\ & \left.\left.F_{\mathrm{ar}}\right) / F_{\text {max }}\right]^{2} \end{aligned}$	0.026		
Number of variables (anisotropic temperature factors for Nb, K, and Si atoms)	44		
$R=$	0.021		
$R_{W}=$	0.022		
Extinction parameter refined $g=$	$9.4(7) \times 10^{-7}$		

diffractometer operating under the conditions given in Table I. For the data reduction, structure solution, and refinement, the MOLEN program chain (1990 version) of Enraf-Nonius (3) was used.

Structure Determination

An examination of the intensity data showed the systematic absences characteristic of space groups $P 4 / \mathrm{mbm}, P 4 \mathrm{bm}$, and $P \overline{4} b 2: k=2 n+1$ for $0 k l$ reflections. The structural determination was first conducted in the centrosymmetric group $P 4 / \mathrm{mbm}$. A Patterson map was used to elucidate the initial position of the heavy atom Nb , with the remaining atoms being found from successive difference Fourier maps. Refinement was carried out by the full-matrix least-

TABLE II
$\mathrm{K}_{2}(\mathrm{NbO})_{2} \mathrm{Si}_{4} \mathrm{O}_{12}$: X -Ray Powder
Diffraction Data

h	k	l	$d_{\mathrm{obs}}(\AA)$	$d_{\mathrm{calc}}(\AA)$	I / I_{o}	h	k	l	$d_{\mathrm{obs}}(\AA ̆)$	$d_{\text {calc }}(\AA \mathrm{A})$	I / I_{o}
0	0	1	8.134	8.136	4	4	1	0	2.120	2.120	16
1	1	0	6.175	6.180	83	4	0	1	2.112	2.110	2
1	1	1	4.909	4.921	4	3	2	2	2.082	2.082	2
2	0	0	4.359	4.370	90	4	1	1	2.052	2.051	6
0	0	2	4.061	4.068	93	0	0	4	2.034	2.034	32
2	1	0	3.903	3.909	32	4	2	0	1.955	1.954	47
2	0	1	3.843	3.850	9	3	1	$3)$		1.936	7
								1.933			
2	1	1	3.521	3.523	66	1	1	$4)$		1.932	15
1	1	2	3.396	3.398	52	4	0	2	1.924	1.925	14
2	2	0	3.091	3.090	48	2	0	4	1.844	1.844	15
2	0	2	2.982	2.978	86	3	3	2	1.838	1.838	12
2	2	1	2.889	2.889	2	3	2	3	1.807	1.807	5
2	1	2	2.821	2.819	60	4	2	2	1.762	1.762	36
3	1	0	2.766	2.764	100	5	1	0	1.714	1.714	28
0	0	3	2.713	2.712	3	4	0	$3)$		1.701	4
1								1.699			
1	1	3	2.484	2.483	3	2	2	$4)$		1.699	16
2	2	2	2.462	2.461	12	5	1	1	1.678	1.677	2
3	2	0	2.425	2.424	3	3	3	3	1.640	1.640	3
3	2	1	2.324	2.323	4	3	1	4	1.638	1.638	29
2	0	3	2.305	2.304	3	5	2	1	1.591	1.592	4
3	1	2	2.286	2.286	17	5	1	2	1.579	1.580	30
4	0	0	2.186	2.185	4	4	4	0	1.545	1.545	18

squares method. The positional parameters of the eight unique atoms, the anisotropic (for Nb, K, and Si atoms) and isotropic (for oxygen atoms) temperature factors were refined to $R=0.099$ and $R_{w}=0.123$. At the completion of the refinement two oxygen atoms located on the four-fold axis, as is the Nb atom, exhibited anomalously large temperature factors ($\sim 4 \AA^{2}$). Similar results were observed when the structure was refined in the acentric $P \overline{4} b 2$ space group ($R=$ 0.094 and $R_{w}=0.122$) probably due to the fact that the change from $P 4 / m b m$ to $P \overline{4} b 2$ leads to the same equivalent positions for atoms on the four-fold axis. The conversion was then made from $P 4 / \mathrm{mbm}$ to $P 4 \mathrm{bm}$ with use of prime and non-prime numbers for pairs of unique atoms corresponding to a single independent position when the $P 4 / \mathrm{mbm}$ space group is used. The z coordinate for $O(2)$ was held invariant in order to define the origin. After some refinement

TABLE III
Fractional Atomic Coordinates and Thermal Parameters

Atom	Position	x	y		z	$B\left(\AA^{2}\right)^{a}$
$\mathrm{Nb}(1)$	$2 a$	0.0	0.0	$0.2160(2)$	$0.580(6)$	
$\mathrm{Nb}\left(1^{\prime}\right)$	$2 a$	0.0	0.0	$0.7194(2)$	$0.542(6)$	
K	$4 c$	$0.3226(1)$	$0.8226(1)$	$0.9919(3)$	$1.28(2)$	
$\mathrm{Si}(1)$	$4 c$	$0.1242(2)$	$0.6242(2)$	$0.3015(2)$	$0.50(2)$	
$\mathrm{Si}\left(1^{\prime}\right)$	$4 c$	$0.1240(2)$	$0.6240(2)$	$0.6938(2)$	$0.47(2)$	
$\mathrm{O}(1)$	$8 d$	$0.4251(4)$	$0.2882(4)$	$0.2330(4)$	$0.81(5)^{*}$	
$\mathrm{O}\left(1^{\prime}\right)$	$8 d$	$0.4219(5)$	$0.2892(5)$	$0.7654(5)$	$1.02(6)^{*}$	
$\mathrm{O}(2)$	$2 a$	0.0	0.0	0.0	$0.96(9)^{*}$	
$\mathrm{O}(3)$	$2 a$	0.0	0.0	$0.5010(9)$	$0.97(9)^{*}$	
$\mathrm{O}(4)$	$4 c$	$0.1200(4)$	$0.6200(4)$	$0.4968(9)$	$1.34(7)^{*}$	
$\mathrm{O}(5)$	$2 b$	0.5	0.0	$0.228(1)$	$1.2(1)^{*}$	
$\mathrm{O}\left(5^{\prime}\right)$	$2 b$	0.5	0.0	$0.7628(8)$	$0.8(1)^{*}$	
Atom	U_{11}	U_{22}	U_{33}		U_{12}	U_{13}
					U_{23}	
$\mathrm{Nb}(1)$	$0.0071(1)$	U_{11}	$0.0079(2)$	0		0
$\mathrm{Nb}\left(1^{\prime}\right)$	$0.0064(1)$	U_{11}	$0.0079(2)$	0	0	
K	$0.0180(4)$	U_{11}	$0.0124(6)$	$-0.0034(5)$	0	$0.0005(5)$
$\mathrm{Si}(1)$	$0.0076(4)$	U_{11}	$0.0039(6)$	$0.0007(7)$	$0.0004(5)$	U_{13}
$\mathrm{Si}\left(1^{\circ}\right)$	$0.0071(4)$	U_{11}	$0.0036(7)$	$-0.0001(6)$	$-0.0003(5)$	U_{13}

Note. The form of the anisotropic thermal parameter is
$\exp \left[2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+H^{2} c^{* 2} U_{33}+2 h k a^{*} b^{*} U_{12}+2 h l a^{*} c^{*} U_{13}\right.\right.$

$$
\left.+2 k\left(b^{*} c^{*} U_{23}\right)\right]
$$

a Starred atoms were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as

$$
B_{\mathrm{cq}}=4 / 3 \sum_{i} \sum_{j} \beta_{i j} \mathrm{a}_{i} \cdot \mathrm{a}_{j} .
$$

cycles the R and R_{w} indices are drastically reduced to 0.025 and 0.026 , respectively, and the temperature factors of the oxygen atoms mentioned above are lowered to more classical values (see Table III). At this level empirical absorption corrections were applied to the data with use of program DIFABS (4). Table I indicates the main results of the final refinements, which include corrections for secondary extinction and take anomalous dispersion into account. In order to keep a data to parameter ratio higher than $10: 1$, anisotropic temperature factors were not assigned to all atoms but to Nb, K, and Si atoms only. It must be mentioned that a refinement of the enantiomorph did not give a significantly different R value. The final Fourier difference map is featureless with maxima and minima in the range $\pm 0.8 e \AA^{-3}$.

Table III presents the final atomic coordinates and thermal parameters (structure factor tables will be sent upon request).

Description of the Structure

The structure, depicted as a polyhedral representation in Fig. 1, may be described as consisting of chains of corner-shared NbO_{6} octahedra running parallel to the four-fold axes. The chains are coupled together by four-membered $\mathrm{Si}_{4} \mathrm{O}_{12}$ rings so that each octahedron shares four corners with four SiO_{4} tetahedra belonging to four different $\mathrm{Si}_{4} \mathrm{O}_{12}$ rings (Fig. 2). In the $\mathrm{Si}_{4} \mathrm{O}_{12}$ ring each of the eight outwardly pointing vertices ($\mathrm{O}(1)$ or $\left.\mathrm{O}\left(1^{\prime}\right)\right)$ joins with one NbO_{6} octahedron so that each $\mathrm{Si}_{4} \mathrm{O}_{12}$ ring links four different chains, thus giving a three-dimensional network. This arrangement delimits channels which extend through the structure in the [001] direction and wherein potassium atoms are situated.

A list of bond distances and bond angles along with their standard deviations is given for $\mathrm{K}_{2}(\mathrm{NbO})_{2} \mathrm{Si}_{4} \mathrm{O}_{12}$ in Table IV. The NbO_{6} octahedra are almost regular with $\mathrm{O}-\mathrm{O}$ distances ranging from 2.73(1) to 2.93(1) \AA for the $\mathrm{Nb}(1) \mathrm{O}_{6}$ octahedron and from $2.74(2)$ to $2.91(1) \AA$ for the $\mathrm{Nb}\left(1^{\prime}\right) \mathrm{O}_{6}$ octahedron.

Fig. 1. $\mathrm{K}_{2}\left(\mathrm{NbO}_{2} \mathrm{Si}_{4} \mathrm{O}_{12}\right.$: [001] view of the structure.

TABLE IV
Selected Interatomic Distances (\AA) and Bond Angles (${ }^{\circ}$) for the Coordination Polyhedra

Coordination of the potassium atom

Within these octahedra the Nb atoms are displaced from the center by about $0.28 \AA$ for $\mathrm{Nb}(1)$ and $0.25 \AA$ for $\mathrm{Nb}\left(1^{\prime}\right)$, thus leading to alternatively short and long $\mathrm{Nb}-\mathrm{O}$ distances along the four-fold axis ($\mathrm{Nb}(1)$ $\mathrm{O}(2)=1.76(2) \AA, \mathrm{Nb}(1)-\mathrm{O}(3)=2.32(2) \AA$, $\mathrm{Nb}\left(1^{\prime}\right)-\mathrm{O}(3)=1.78(2) \AA$, and $\mathrm{Nb}\left(1^{\prime}\right)-$ $O(2)=2.28(2) \AA)$. It must be pointed out that this sequence of $\mathrm{Nb}-\mathrm{O}$ distances along the four-fold axis cannot occur when $P 4 /$ $m b m$ and $P \overline{4} b 2$ space groups are used for the structural determination. In the NbO_{6}

Fig. 2. Perspective [110] view of the $\mathrm{Si}_{4} \mathrm{O}_{12}$ ring with two of its four adjacent chains of NbO_{6} octahedra.
octahedra the four remaining $\mathrm{Nb}-\mathrm{O}$ distances are equivalent $(\mathrm{Nb}(1)-\mathrm{O}(1)=$ $1.968(6) \AA$ and $\left.\mathrm{Nb}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)=2.000(8) \AA\right)$. The coordination polyhedra around Nb atoms are very similar to those observed around Ti atoms in the well-known potassium titanyl phosphate $\mathrm{KTiOPO}_{4}(5)$.

The SiO_{4} tetrahedra are almost regular with $\mathrm{Si}-\mathrm{O}$ distances ranging from $1.59(1)$ to $1.647(5) \AA$ for the $\mathrm{Si}(1) \mathrm{O}_{4}$ tetrahedron and from $1.604(9)$ to $1.632(4) \AA$ for the $\mathrm{Si}\left(1^{\prime}\right) \mathrm{O}_{4}$ tetrahedron. Within the $\mathrm{Si}_{4} \mathrm{O}_{12}$ ring the four silicon atoms and the four bridging oxygen atoms all lie on a mirror plane, two of these latter bridging oxygen atoms $\left(O(5)\right.$ and $\left.O\left(5^{\prime}\right)\right)$ being situated on the binary axis. Moreover the $\mathrm{Si}(1)-\mathrm{O}(4)-\mathrm{Si}\left(1^{\prime}\right)$ angle is close to $180^{\circ}\left(183.6(3)^{\circ}\right)$. The fourmembered $\mathrm{Si}_{4} \mathrm{O}_{12}$ ring can then be described as the association through a mirror plane of two $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups in an eclipsed configuration (Fig. 2). The symmetry of the $\mathrm{Si}_{4} \mathrm{O}_{12}$ ring is in fact very close to mmm and the acentric character of the structure,
i.e., the change from $P 4 / \mathrm{mbm}$ to $P 4 b m$, is mainly due, as previously mentioned, to the sequence of $\mathrm{Nb}-\mathrm{O}$ distances along the four-fold axis.

The $\left[(\mathrm{NbO})_{2} \mathrm{Si}_{4} \mathrm{O}_{12}{ }^{2-}\right]_{n}$ framework is very similar to the $\left[(\mathrm{ScOH})_{2} \mathrm{Si}_{4} \mathrm{O}_{12}{ }^{4-}\right]_{n}$ framework already observed in $\mathrm{K}_{4}(\mathrm{ScOH})_{2} \mathrm{Si}_{4} \mathrm{O}_{12}$ (6). One can observe that in this latter compound there are twice as many potassium atoms per formula unit as in the title one; vacant sites, which could allow fast potassium ion mobility, are then available within the $\left[(\mathrm{NbO})_{2} \mathrm{Si}_{4} \mathrm{O}_{12}{ }^{2-}\right]_{n}$ framework.

Preliminary second harmonic generation tests, performed on a polycrystalline sample of $\mathrm{K}_{2}(\mathrm{NbO})_{2} \mathrm{Si}_{4} \mathrm{O}_{12}$ with use of the 1.06 $\mu \mathrm{m}$ line of a YAG: Nd laser, have confirmed subsequently that the structure is non-centrosymmetric. Ion exchange, dielectric, and non-linear optical properties
of the title compound are presently being investigated $(7,8)$.

References

1. L. Hagman and P. Kierkegaard, Acta Chem. Scand. 22, 1822 (1968)
2. R. Yvon, W. Jeitschko, and E. Parthe, J. Appl. Crystallogr. 10, 73 (1977).
3. C. Kayfair, "MOLEN Structure Determination Package," Enraf-Nonius, Delft, The Netherlands (1990).
4. N. Walker and D. Stuart, Acta Crystallogr., Sect. A: Found. Crystallogr. 39, 158, (1983).
5. I. Tordjman, R. Masse, and J. C. Guitel, Z. Kristallogr. 139, 103 (1974).
6. Yu. A. Pyatenko, T. A. Zhdanova, and A. A. Voronkov, Sov. Phys. Dokl. Engl. Transl. 24, 794 (1979).
7. Y. Piffard, M-P. Crosnier, M. Tournoux, D. Guyomard, and A. Verbaere, French Patent 9004475 (1990).
8. M-P. Crosnier, D. Guyomard, A. Verbaere, Y. Piffard, and M. Tournoux, Ferroelectrics, in press.

[^0]: * To whom correspondence should be addressed.

